Stability of stationary solutions in models of the Calvin cycle

نویسندگان

  • Stefan Disselnkoetter
  • Alan D. Rendall
چکیده

In this paper results are obtained concerning the number of positive stationary solutions in simple models of the Calvin cycle of photosynthesis and the stability of these solutions. It is proved that there are open sets of parameters in the model of Zhu et. al. [15] for which there exist two positive stationary solutions. There are never more than two isolated positive stationary solutions but under certain explicit special conditions on the parameters there is a whole continuum of positive stationary solutions. It is also shown that in the set of parameter values for which two isolated positive stationary solutions exist there is an open subset where one of the solutions is asymptotically stable and the other is unstable. In related models derived from the work of [4], for which it was known that more that one positive stationary solution exists, it is proved that there are parameter values for which one of these solutions is asymptotically stable and the other unstable. A key technical aspect of the proofs is to exploit the fact that there is a bifurcation where the centre manifold is one-dimensional.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical properties of models for the Calvin cycle

Modelling the Calvin cycle of photosynthesis leads to various systems of ordinary differential equations and reaction-diffusion equations. They differ by the choice of chemical substances included in the model, the choices of stoichiometric coefficients and chemical kinetics and whether or not diffusion is taken into account. This paper studies the long-time behaviour of solutions of several of...

متن کامل

TREND-CYCLE ESTIMATION USING FUZZY TRANSFORM OF HIGHER DEGREE

In this paper, we provide theoretical justification for the application of higher degree fuzzy transform in time series analysis. Under the assumption that a time series can be additively decomposed into a trend-cycle, a seasonal component and a random noise, we demonstrate that the higher degree fuzzy transform technique can be used for the estimation of the trend-cycle, which is one of the ba...

متن کامل

The Stability of Some Systems of Harvested Lotka-Volterra Predator-Prey Equations

Some scientists are interesting to study in area of harvested ecological modelling. The harvested population dynamics is more realistic than other ecological models. In the present paper, some of the Lotka-Volterra predator-prey models have been considered. In the said models, existing species are harvested by constant or variable growth rates. The behavior of their solutions has been analyzed ...

متن کامل

A Calvin bestiary

This paper compares a number of mathematical models for the Calvin cycle of photosynthesis and presents theorems on the existence and stability of steady states of these models. Results on five-variable models in the literature are surveyed. Next a number of larger models related to one introduced by Pettersson and Ryde-Pettersson are discussed. The mathematical nature of this model is clarifie...

متن کامل

On Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory

In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016